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ABSTRACT 

This  paper  conta ins  the  second s tep in the  proof  of exis tence of equilib- 

r ium payoffs for two-player s tochast ic  games.  It deals with the  case of 

posit ive absorbing recursive games  

This paper* complements [12]. We prove here the existence of equilibrium 

payoffs in two-player, absorbing positive recursive games. Recursive games are 

stochastic games in which the players receive a payoff equal to zero until an 

absorbing state is reached. Positive recursive games are recursive games in which 

the payoff to one of the players is positive in each absorbing state. Such a game is 

absorbing if the other player cannot prevent the play from reaching an absorbing 

state in finite time. 

Zero-sum recursive games were first introduced by Everett [2], who proved the 

existence of stationary e-optimal strategies. Flesch, Thuijsman and Vrieze [3] 

exhibited a two-player recursive game with no stationary e-equilibrium profile. 

Independently of our work, Solan [9] proved the existence of equilibrium payoffs 

* This is a thoroughly revised version of a discussion paper which circulated under 
a slightly different title [10]. I wish to thank Eilon Solan, Sylvain Sorin and an 
anonymous referee for many helpful comments. 
Received January 28, 1998 
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in two-player, positive recursive games with two non-absorbing states that have 

the absorbing property. 

The paper is organized as follows. Section 1 contains definitions and the state- 

ment of the main result. Sections 2 and 3 are devoted to examples. The first 

example is a variation on the example in [3]: it is a two-player positive absorbing 

recursive game with no stationary e-equilibrium profile. The second example is 

used to present the main features of the e-equilibrium profiles that we obtain. 

Section 4 provides a sufficient condition for the existence of equilibrium payoffs. 

In Section 6, we define a family of constrained games, indexed by c > 0, and 

analyze the asymptotics of this family, as 6 goes to zero. 

1. Definitions and main result 

A two-player recursive game is given by (i) a finite set of states S partitioned 

into S* and S\S*;  (ii) finite sets A and B of available actions; (iii) a transition 

function p: S \S*  x A x B -+ A(S) ,  where A(S) is the space of all probability 

distributions over S, and (iv) a payoff function g = (gl, g2): S* -+ R 2. 

The game is played as follows. As long as S* has not been reached, the players 

choose actions, and the state changes from stage to stage according to p. As soon 

as a state s* C S* is reached, the game stops and the players receive the payoff 

g(s*). The elements of S* are called absorbing states. 

It is convenient to formalize this as follows. The set of stages is the set N* 

of positive integers. The initial state sl is given. At stage n, the current state 

sn is announced to the players. Player 1 and player 2 choose an action an and 

ba respectively, independently and possibly at random. The action combination 

(aa, ba) is publicly announced, 8a-{-1 is either drawn according to p('lSa, an, ba) if 

Sa E S \S*  or sa+l = sa if sa E S*, and the game proceeds to stage n + 1. 

We denote by Ha = (S • A • B)  a-1 x S the set of histories up to stage n, 

by H = Ua>_l Ha the set of finite histories, and by Hoo = (S • A • B) i the 

set of plays. A strategy of player 1 is a map a: H -+ A(A), with the usual 

understanding: a(hn) is the distribution used by player 1 to select his action 

in stage n, when the past history of play is ha. Strategies of player 2 are maps 

~-: H -+ A(B).  Stationary strategies of player i are strategies that depend on the 

history only through the current stage. Thus, a stationary strategy of player 1 

can be identified with an element x = (x~)ses C A(A) S, with the understanding 

that x~ is the lottery used by player 1 to select his action whenever the current 

state is s. 

Each ha E Ha is identified with a cylinder set of H ~ .  We denote by Ha the 
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induced algebra over Hoo, and we set 7/oo = or(t i , ,n > 1). Given an initial state 

s, any pair (or, T) of strategies induces a probability distribution over (Hoo, Noo), 

which we denote Ps,a,~. E,-,a,r stands for the corresponding expectation operator. 

All norms in the paper are supremum norms. W.l.o.g., we assume Iig]l -< 1. 

1.1 PAYOFFS AND EQUILIBRIA. Throughout the paper, t = inf{n _> 1, sn E S* } 

stands for the termination stage. For n _> 1, denote by gn = g ( s t ) l t< ,  E R 2 the 

vector of the payoffs received in stage n and by 

7, , (s ,a,r)  = E,,~,, gk 
k----1 J 

the expected average payoff up tos tage n induced by the profile (or, T), given the 

initial state is s. 

We define 7(s, a, T) := lim,~-,oo 7,(s ,  or, 7") = Es,~,,~[g(st)lt<+oo]. 

Definition 1: Let s be the initial state. A vector 7(s) 6 1:[ 2 is an equilibrium 

payoff of F if, for every e > 0, there exist a pair (or*, T*) and N E N* such that,  

for every n >_ N: 
w ,  or', r) _< + e, 

and 

I b , ( s ,  o r ' ,  -  (s)ll _ e .  

We then say that (a*, T*) is a e -equ i l ib r ium prof i le  a s so c i a t ed  w i t h  7(s). 

Clearly, we may replace the last requirement by [[7(s, or*,r*)-  7(s)[[ _< e. It 

asserts that the average payoffs induced by the pair (G*, r*) depend little on the 

length of the averaging period. Together with this condition, the first two imply 

that (or*, r*) is a 2e-equilibrium in the n-stage game, provided n > N. 

1.2 THE RESULT. 

A recursive game F is pos i t ive  if g2(s) > 0, for every s E S*. A recursive 

game has the a b s o r b i n g  p r o p e r t y  if there exists a stationary strategy y of 

player 2 such that  

t < +oo, Ps,z,~-a.s. for every initial state s and every x. 

The purpose of the paper is to prove the next result. 

THEOREM 2: Every positive absorbing recursive game has an equilibrium payoff. 
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2. A first  e xa mp le  

We show on an example that, given e > 0, there need not exist a stationary 

pair (x, y) that  is an c-equilibrium for each possible initial state. Consider the 

positive absorbing'recursive game described by 

/ 
1 (-1,3)* 
i 

sO 

[/[1,1"] 
Sl 

1\12,2" I 
$2 

Hence 72(s2, 0, (Yl, Y2)) _~ 1 + Y2. By the e-equilibrium property, Y2 _> 1 - e. On 

the other hand, 71(s0, 0, (Yl, Y2)) _< 1, and an immediate computation yields 

") '1(80,  1, (Yl, Y2)) - -  -1  + 8y2 > 1 + e 
1 + 4y2 

since Y2 _~ 1 - e. Again, this contradicts the e-equilibrium property for player 1. 

~2(s2,0,(yl, y2))-- ~ 2 y 2 + l - y 2  if yl >0 ,  
2y2 if Yl = 0. ( 

Figure 1 

The meaning of Figure 1 is the following. Player 1 is the row player, and S\S* = 

{so, sl, s2}. In state so (resp. sl, s2), player 1 (resp. player 2) has two available 

actions, and only one otherwise. Starred entries indicate that the game moves 

to an absorbing state with the corresponding termination payoff if this entry is 

played, while arrows indicate transitions. Consider state So. If player 1 plays 

the top row, the game moves to state Sl; if player 1 plays the bottom row, the 

transition is random: the game moves either to s2 or to an absorbing state, with 

4 and 1 respectively. probabilities g 

A stationary strategy for player 1 is described by the probability x E [0, 1] of 

playing the bottom row in state So. A stationary strategy y -- (yl, Y2) of player 2 
is described by the probabilities yl and y2 of choosing the right column in states 

sl and s2 respectively. 

1 Assume first x > 0. Observe Assume (x, y) is a c-equilibrium, for some e < ~. 
that ~2(s, x, (0, 0)) = 3, hence 72(s, x, (Yl, Y2)) _> 3 -e .  Therefore, the probability 

under Ps,x,(yl,y2) of eventually reaching the state with payoff (-1,  3) is at least 

1 - e .  Thus, ~/l(s2,x, (Yl,Y2)) is at most -1  • (1 - e )  +2  • e < -e .  On the other 

hand, ~/1(s2, 0, y) > 0, which contradicts the e-equilibrium property for player 1. 

Assume now that x -- 0. Observe that 
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In this example, the following is true. For every s E S, there exists a stationary 

E-equilibrium (x, y), given the initial state is s. Whether this holds or not in 

general is an open problem. 

3 .  A s e c o n d  e x a m p l e  

We illustrate on an example, in some detail, the main features of the c-equilibrium 

profiles that  will appear in the paper. We consider the following game, in which 

dotted entries indicate that the current state does not change if the corresponding 

entry is played. As above, player 1 is the row player. 

[s l 1,2" I 

II]  ] Is 12,3"1 o,r s, 2,1" 
sl 1, 4* s5 �9 �9 Is310," I 

$2 S4 

We shall describe an 6-equilibrium profile (a*,T*) associated with the payoff 

vector (1, 3) (the initial state is irrelevant). The vector (1, 3) is the arithmetic 

average of the payoffs received in the different absorbing states. 

Under (a*, T*), the play is divided into a succession of identical cycles. In each 

cycle, the probability of termination (given the past) is small and the players 

make sure that  each starred entry is played with the same probability. Therefore, 
the payoff received, conditional on the fact that termination occurs within the 

cycle, is close to (1, 3) and the continuation payoff (expected payoff, given the 

past history) is always close to (1, 3) prior to termination. 
Consider any cycle. Player 1 will mostly follow the stationary strategy x that 

plays the top row in both states s2 and s3, and player 2 will mostly follow the 

stationary strategy y that plays the left column in both states sl, 82, 84 and Ss, 

and both the left and middle column with probability �89 in state s3. 

Observe that, given y, the absorbing state with payoff (1,4) can be obtained 

only by a unilateral perturbation of player 1 in state s2; given x, the absorbing 

states with payoffs (2, 3), (2, 1), (1, 2) and (0, 1) can be obtained only with a 
unilateral perturbation of player 2; finally, the absorbing state with payoff (0, 7) 

can be reached only if both players perturb simutaneously to the middle row and 

right column in state s2. 

In the cycle, each such perturbation is tried in turn. Clearly, player 1 (resp. 

player 2 ) is indifferent between playing the bottom row or not in state s2 (resp. 

the right column in sl) since the corresponding termination payoff coincides in 

that case with the continuation payoff. The players can control the probability 
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of reaching the state with payoff (0, 7) by using the following method: for N 

times, the players visit the state s2 and perturb to the middle row and right 

column with probability v ~  each (where (1 - ~)N = 1 -- r/); by choosing ~ small 

enough, each player can monitor the behavior of the other in an efficient and 

reliable way, by checking the empirical frequencies of the middle row and right 
column. 

Finally, player 2 would clearly prefer not to play the right column in the states 

s3, s4 and sh. To make sure that each such perturbation is used with the correct 

probability, we introduce public lotteries performed by player 1. More precisely, 

observe that,  given the game starts in s2, s3 or s4 and player 1 follows x, 1 is 

the best payoff that player 2 may get, and he would get this payoff by playing 

the right column in either state s3 or s4. Observe also that the corresponding 

arithmetic average of the payoffs to player 1 is then �89 + 0) = 1, so that player 

1 is indifferent as to whether or not player 2 will play the right column in one of 

these two states. So the idea is to have player 1 choose for player 2. Of course, 

we wish to obtain this without the help of an external correlation device. We 

proceed as follows. Player 1 performs the public lottery by choosing to play or 

not the middle row in state s2 (the public lottery could be based on the bot tom 

row in s~). Now, given player 1 plays the middle row in state s2, the game moves 

to state sl,  and 1 is no longer the best payoff that player 2 can get against x. 

Therefore, the outcome of the public lottery should be interpreted as: if player 

1 does not play the middle row, the players should terminate the game with a 

unilateral perturbation of player 2. An additional issue arises: since this event 

should have the small probability ~, and since the lottery should be done using 

small perturbations of x (for reasons that do not appear in the example), the 

randomization by player 1 cannot be done only once, and the lottery has to be 

split over many visits in s2. Formally, we require that the players visit N times 

s2, without visiting either s1 or s5, and that each time player 1 perturbs to the 

middle row with probability A, where (1 - A) g = 1 - 71. If after these N visits, 

the middle row has been played, the players go along with the sequence of cycles; 

otherwise, player 2 is required to terminate in state (0, 1) or (2, 1). 

To try the unilateral perturbation leading to the absorbing state with payoff 

(1, 2), a similar method is employed. Here, we observe that,  given the game does 

not start  in sl, 2 is the best payoff that player 2 may get against x. Since player 

1 is indifferent as to whether player 2 plays the right column in s5 or not, the 

same device as in the previous paragraph can be used. 

Thus, the cycle is divided into five phases: the first two are devoted to the 
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unilateral exits of either player that require no special treatment: right column 

in state s~, and bottom row in state s2. In the example, one stage is sufficient to 

try each of these exits. In general, the player who is considering to perturb has 

to monitor the actions of the opponent. The third phase is devoted to the joint 

perturbation in state s2, and the last two phases to the two lotteries performed by 

player 1. The five phases involve different non-absorbing states. It is clear that,  

by playing appropriate perturbations of (x, y), it is possible to circulate within 

S\S* and to reach any given state, and still to terminate with probability zero. 

The feasibility of the public lottery is also based on the possibility to circulate 

within the subset {s2, s3, s4, ss}. 

4. Suff ic ient  c o n d i t i o n  

We provide in this section a condition under which a payoff is an equilibrium 

payoff. Given C _C S, an ex i t  d i s t r i b u t i o n  from C is a distribution q E A(S) 

such that  q(C) < 1. We denote by ec  = inf{n >_ 1, s~ ~ C} the exit stage from 

C. 

We define vl(s) = sup~inf~71(s ,a , r )  = inf~sup~71(s ,~ , r )  and v2(s) = 

sup~ infa 72(s, a, r)  = info sup~ 72(s, a, r) .  The property that the inf and the sup 

commute is due to Everett [2]. By Mertens and Neyman [5], given e > 0, there 

exist ae, Te and N e e  N* such that "~(s, a, 7e) <_ vl(s)+e and 72(s, ae, v) <_ v2+e 
for each a, r and n > Ne. We refer to ere and r~ as e-punishment strategies. The 

strategies ae and Te may be chosen stationary (see [2] or [7]). 

Definition 3: Let C C_ S\S* and "~ E (R2) s be given. Let q be an exit distri- 

bution from C. The distribution q can be i m p l e m e n t e d  given 7 if, for every 

6 > 0, there exist a profile (Crc,Tc) and a bounded stopping time 7r such that,  

for every s E C: 

�9 Ps,~c,~c (ec < +oo) -- 1 and the law of See is q; 

�9 Ps,~c,~c(~r < ec) < 6; 
�9 for every Es, , cbl(soo)loc<. + vl(s )l _<oc] < Eq[  + 6; 

�9 for every + < + 6 

We then say that  the pair (ac, rc) implements q up to 6. The first condi- 

tion is self-explanatory. The stopping time ~r reflects the fact that  the players 

monitor each other, in order to deter deviations. It should be thought of as a 

stage in which indefinite punishment starts. With this interpretation in mind, 

the second condition means that  the monitoring is reliable: given (ac, rc), the 

probability that a player will ever fail the tests associated with 1r is small. The 
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third requirement means that there is no way for player 1 to increase the exit 

payoff without being detected. In that sense, the monitoring tests are effective. 

The fourth requirement is the symmetric one for player 2. 

Let a payoff vector 3' E (R2) s, and (x, y) be given. Let C be a collection of 

disjoint subsets of S\S*,  and qc be an exit distribution from C, for each C E C. 

Let T = {s E S\S* ,  s ~ C for each C E C} contain the remaining sets. We define 

a transition function io on S by 

~" qc(s') if s E C for some C E C, 
~(s'[s) = [ p(s']s, xs, ys) i f s  E T; 

P8 is the law of the Markov chain with transition ~ and initial state s; F,[.[s] is 

the expectation with respect to ~(.[s). 

PROPOSITION 4: Assume that the following four properties hold: 

P1 for each C E C, the distribution qc can be implemented given 3"; 

P2 for each s E T, (xs,ys) is an equilibrium in the one-shot game with payoff 

Ebls,.,-], 
P3 % = g(s) for s E S* and % = E[VIs] otherwise; 

P4 3'(s) _> v(s) for each s; 

P5 P~(t < +cx~) = 1, for each s E S. 

Then 3" is an equilibrium payoff. 

Proof: Givene > 0, w e c h o o s e N E  N s u c h t h a t  Ps(t  < N ) _ >  1 - e ,  a n d w e  

set 6 = r  For each C E C, we let (ac, ~'c) be a profile that implements qc up 

to 6, and denote by 1re the associated stopping time. Define ~ by: whenever the 

game enters some set C E C, fi switches to ac  until the game leaves C; whenever 

the current state does not belong to any C E C, 6" coincides with x. Define ~ in 

a similar way. 

The punishment stage ~r is defined as follows: punishment occurs if, during,.a 

visit in some C E C, the requirements defining 7re are met or  if the number of 

visits to sets C E C plus the number of stages spent in T exceeds N (see [12] for 

details). 

Finally, denote by (a*,T*) the profile that coincides with (~, 7) until ~r, and 

that switches to e-minmax strategies at that stage. It is straightforward to 

simplify the proof of Proposition 16 in [12] in order to show that (a*, T*) is a 

3e-equilibrium profile associated with 3". I 
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5. C o n t r o l l e d  se ts  

We give here a sufficient condition for implementation. We define controlled 

exit distributions given a continuation payoff, and prove that  controlled exit 

distributions can be implemented. 

We first recall some notions that are introduced in Vieille [12]. Given a 

stationary strategy y, and a set C C_ S, we set 

Hi(y, C) = maxmaxE[vl t s ,  a, y~]. 
aEA sEC 

It is argued in [12] that it is a measure of player l 's  level of individual ratio- 

nality, given y and the fact that the game will visit states in C. Similarly, we 

set H2(x, C) = maxbeB max~ccE[v21s, xs, b], and we summarize the two in the 

vector H(x, y, C) = (HI(y, C), g2(x, C)). 

5.1 COMMUNICATION. We recall a notion introduced in Vieille [12]. The sup- 

port of a probability distribution ~ is denoted by Supp #. Expectations with 

respect to ~ are written E~,. Let # and ~ be two distributions over a finite set 

M. ~ is a p e r t u r b a t i o n  of # if Supp # C_ Supp ~. 

Given any pair (x, y), and a subset C of S, we define a directed graph Gc(x, y) 
as follows: 

�9 the set of vertices is C; 

�9 for any two states s, s r E C, there is an edge from s to s I if and only if 

there exist perturbations xs, y~ of xs, y~ such that p(s'ls,~.s, ~ )  > 0 and 

 (cIs, = 1. 

Definition 5: Let (x,y) be a pair of stationary strategies. A set C C_ S 

c o m m u n i c a t e s  u n d e r  (x, y) if the graph Gc(x, y) is strongly connected. The 

set of sets that  communicate under (x, y) is denoted C(x, y). 

Recall that  a directed graph is strongly connected if, given any two vertices, 

there is a path joining the first to the second. 

5.2 CONTROLLED AND IMPLEMENTABLE EXIT DISTRIBUTIONS. 

5.2.1 Definition. Proposition 7 gives a condition under which a distribution 

q E A(S) can be implemented given % 

We introduce a terminology that  was first used by Solan [8]. Let (x, y), and 

C c_ S be given. A pair (s, a) E C x A is a un i l a t e r a l  ex i t  of player 1 (from 

C given y) if p(CIs, a, Ys) < 1. Given a unilateral exit e = (s, a) of player 

1, we abuse notations and write p(.le) instead of p(.is, a, ys). Unilateral exits 

(s, b) of player 2, from C given x, are defined by exchanging the roles of the two 
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players. For such a pair e = (s, b), we write p(.le) instead ofp(.Is,  xs, b). A triplet 

e = (s, a, b) �9 C x A • B is a j o i n t  ex i t  (from C given (x, y)) if neither (s, a) 

nor (s, b) is a unilateral exit, and if p(CIs , a, b) < 1. In tha t  case, we also write 

p(.le) = p(.Is, a,b). 
For simplicity, we use the letter e for the three different types of exit. We 

denote  by E~(x, y), resp. E2(x, y) and EJc(X, y) the set of unilateral exits of 

player 1 (from C given y), the set of unilateral exits of player 2 and the set of 

joint  exits. Finally, Ec(x,y)  is the set of all exits from C. 

Let  q �9 A(S)  be given in the convex hull of the distributions 

p(.le), e �9 Ec(x,  y). Such a distribution q can be uniquely decomposed as 

q= E a~P('le) 
e6Ec(x,y) 

where c~e _> 0, and ~ a e  -- 1. Given F C_ Ec(x,y),  we set ~F = ~eeFOte and 

qF = ~ ~eFC~eP('le). For i ---- 1,2, j ,  we set E ~ -- {e �9 E~(x,y), c~ > 0}. 

Definition 6: Let (x,y) and 7 �9 (R2) s be given. The distr ibution q is 

c o n t r o l l e d  g i v e n  (x, y) and 7 if the following five conditions are satisfied: 

1. C �9 C(z,y). 
2. 3' -> v, and 77(s) = Ea[7], for every s �9 C; we set 7(C) = 77(s). 

3. E[711e] = 71(C) for every e �9 E l ;  E[721e] < 72(C),  for every e �9 E 2. 

4. H2(x,C) <_ 72(C) and Hl(y,C) <_ 771(C). 
5. Set F ~ = {e �9 E 2, E[721e] = Eq[72]}. There is a part i t ion $ of E 2 \ F  ~ and 

a collection (CF)ge~ such that  for each F �9 $: 

(a) CF C_ C and CF �9 C(x,y); 
(b) for each (s, b) �9 F, s �9 CF; 
(c) E[721e] is independent  of e �9 F and E[721e] _ H2(x, CF); 
(d) EqF[71] = Eq[T']; 

(e) For any unilateral exit (s, b) �9 CF • B from CF, one has E[721s, xs, b] 

_< Eq~ [772]. 

PROPOSITION 7: Let C C_ S and q be a controlled exit distribution given (x, y) 
and 77. Then q can be implemented given 77. 

The  proof  of Proposi t ion 7 contains many s tandard features. For this reason, 

it has been postponed to Section 8. 

Remark 8: If 3' = v, E 2 = EJ = 0 and E 1 is a singleton set, Definition 6 reduces 

to the definition of a set controlled by player 1, tha t  is given in [12]. It is then 

also the case tha t  q is controlled given any payoff vector 77 _> v. 
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If 7 -- v, E 1 = E 2 = O, Definition 6 reduces to the definition of a jointly 

controlled set (see [12]). It is then also the case that q is controlled given any 

payoff vector V -> v. 

6. A bes t - r ep ly  m a p  

We define in this section a family of games (F~) indexed by ~ > 0, that  approxi- 

mates the original stochastic game. For each c > 0, we define a correspondence 

B~ that  might be thought of as the best-reply correspondence of the game F~, 

although it differs from it in some essential respects. We shall argue that for each 

> 0, B~ has a fixed point and that there is a semi-algebraic selection of the 

graph of ~ ~ {fixed points of B~}. In section 7, we derive implications from this 

analysis. 

We first prove some results on the structure of the set of stationary best replies 

of player 1 to fully mixed stationary strategies of player 2. 

6.1 STRUCTURE OF STATIONARY BEST REPLIES. We denote by 

(9 = {y E A(B)S ,  ys(b) > 0 for each (s,b) e S x B} 

the set of fully mixed stationary strategies of player 2, and by S = A(A) S the 

set of stationary strategies of player 1. For s E S, and y C A(B) s, we denote by 

~l(s, y) = maxs V1(s,., y) the maximal payoff that player 1 may get, given y and 

the initial state s. We give a few easy properties of the set 

Bl(y)  = {x �9 $ ,71(s , x , y )  = ~l(s ,y)  for each s} 

of best replies to y. We shall use extensively the fact that for any initial state s, 

and every pair (x, y) �9 $ x O, S* is reached in finite time, Ps,x,y-a.s. 

LEMMA 9: Let (x,y) �9 S x O, and u: S -+ R,  such that u(s) = g(s) for each 

s C S * .  

�9 Assume that E[uls, x~,y~ ] > u(s) for each s. Then V l ( s , x , y )  > u(s) for 

each s. 

�9 Assume moreover that E[ul~, xh, y~] > u(~) for some ~. Then 71(~, x, y) > 

Proof: Let an initial state s be given. The first assumption implies that  the 

sequence (U(Sn))n>l is a submartingale under (x, y). Since t < +oc, Ps,x,y-a.s., 

Es,x,y[U(St)] >_ u(s). The first claim follows, since u(st) = g(st). 
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We prove now the second claim. By the first claim, ~/l(s, x, y) >_ u(s) for each 

s. Therefore 

= > > R 

The next lemma gives a characterization of Bl(y).  

LEMMA 10: Let (x,y) E $ x O, and ~ E BI(y). Then 

(1) E[71(.,2, y)Is, x,,ys] < ~l(s ,f : ,y)  /'or each s. 

Moreover, x E BI(y) if and only if equality holds in (1) for each s. 

Proof  We argue by contradiction. We assume that the set 

= {8 e S , E [ 7 1 ( - , 2 , y ) l s ,  > 

is non-empty. Define ~ E ,.q by 5~ = xs for s E S and xs = 2s otherwise. By 

construction, E[gA( ., 2, y) I s, 58, Ys] >_ ~/l(s, 2, y), and the inequality is strict for 

s E ~'. By Lemma 9, ~/l(s,5,y) > ")A(s,2, y) for s E S, a contradiction. 

If equality holds in (1) for each s, one gets ~/1 (s, x, y) = .),l(s, 2, y) for each s, by 

applying Lemma 9 twice, to the function 71( ., 2, y) and its opposite. Conversely, 

if x E BI(y),  one has ~/l(s,2, y) = ~/l(s,x,y) for each s and the conclusion is 

obvious. I 

We shall let y E (9 vary. We denote by Sp the set of pure stationary strategies 

of player 1. Blackwell [1] has shown that B~(y) ~ 0 for each y, and that  Bl(y)  
contains at least one element of Sp. For y E O, and s E S, we set 

A(s,y)  = {a E A, E[Z/l(.,y)is, a, ys] = ql(s,y)}.  

By Lemma 10, a strategy x E $ is in B~(y) if and only if Suppxs C_ A(s,y)  for 

each s E S. In particular, Bl(y)  is a compact convex subset of ,.q. 

LEMMA 11: The set {(x,y) E S • O, x E Bl(y)} is a semi-algebraic subset or" 
R AxS x I~ B• 

Proof." Let x E Sp be fixed. For each s E S, the function y E O ~-~ OA(s, x, y) 

is a rational function in the variables ys(b), (s, b) E S x B. Since Sp is finite, 

the function y ~-~ zyl(s,y) = maxsp "yl(s,x,y) is semi-algebraic. Observe now 

that, for each s E S, A(s, y) is defined by a polynomial equality in the variables 
y~(b),b E B and ~l(s ' ,y) ,  s' E S. The result follows. I 
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Observe moreover that the function y ~ "yl(s,x,y), being rational, is 

continuous. Therefore y ~ ztl(s,y) = maxsp 71(s ,x ,y)  is also continuous on 

O. Thus, y ,  > A(s, y) is upper hemicontinuous, for each s E S. 

6.2 FIXED-POINT ANALYSIS. We fix integers no, m l , n l , . . .  ,m[BIxlS[, nlBIx[S I 
such that  no = 0, np+l > ISI • mv+l and mp+l > np for each p < I B] x IS}. 

Given E > 0, we define 

0(~) = {y E O, ys(b) >_ r nLm• for each (s,b)}. 

It is non-empty for e small enough. We define a correspondence Be on ,S x O(r 

and derive some properties. We first define a function c: S • O • S x B --+ 1~ by 

c(~,y) (s, b) = m ~  E[~ 2 (., x, y) ls, xs, b'] - E[~ 2 (., x, y) ls, xs, b], 

for every (x, y) E $ • O, (s, b) E S • B: given future payoffs are given by 

('~2(s',x, Y))s,, the number c(x,y)(s, b) may be interpreted as the cost of playing 

b in state s against xs, compared with optimal actions in state s. 

Observe that  minbeSC(~,y)(S, b) = 0, for every (x, y, s) E S x O x S .  

LEMMA 12: Let (s,b) E S • B be given. The map (x,y) ~-+ c(x,y)(s,b) is 
continuous and semi-algebraic on ,.q x O. 

Proof: The map (x,y) , ) "/2(s,x,y) is a rational function on $ x O in the 

variables xs,(a),ys,(b), (s' ,a,b) E S • A • B,  hence is continuous. Therefore, 

for each b E B, the map (x,y) ~ E[~/2(.,x,y)ls, x~,b] is both continuous and 

semi-algebraic on 8 • O. I 

Let (x,y) E S •  For (s,b) E S x B ,  wele t  

~(x ,y;s ,b)  = I{(s', b') E S • B,c(~,y)(s',b') < c(~,y)(s,b)}l, 

n(x,y; s , b ) =  I{(s' ,e)  e s • B, < 

be the number of state-action pairs that  have a cost strictly lower than and lower 

than or equal to the cost of the pair (s, b). 

Given (x, y) E S x O(e), we define 

Be(• = BI(y) • 

where B 1 is the correspondence defined in Section 6.1 and 

B2(x,y)  = {~ E O(e), such that  em~- (*'~;~'b) <_ ~8(b) _< r for each (s,b)}. 

It is non-empty provided r < g, and g > 0 is small enough. 
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PROPOSITION 13: For each e < g, the correspondence B~ has a fixed point. The 
set {(e ,x ,y)e  > O, (x,y) E $ x O(e) is a fixed point of Be} is semi-algebraic. 

Proof: B~ is defined on a compact convex set. We already remarked that B 1 

has compact convex values and is upper semicontinuous. Let (s, b) E S • B be 

given. Since (x, y) ~ c(,,y)(s', b I) is continuous for each (s', E), the functions 

(x, y) ~ ~(x, y; s, b) and (x, y) ~4 n(x, y; s, b) are respectively lower and upper 

semicontinuous. The upper semicontinuity of B ff follows. Since B ff has compact 

convex and non-empty values, Be has a fixed point, by Kakutani's theorem. 

By Lemma 11, the set {(x, y), x E Bl(y)} is semi-algebraic. We now prove that  

{(e, x, y) E (0, 1) x $ x O, y E B2(x, y)} is also semi-algebraic. Let (s, b) E S x B 

be given. For each (s ~, b'), the set 

{ ( x , y )  s • < 

is semi-algebraic. Therefore, for each n, fi E N, the set 

{(x,y) E $ x O, n(=,y)(s,b) = n and ~(=,y) (s, b) = 5} 

is semi-algebraic. Thus, the set 

Bn_.,(s,b) = {(r E (0,1) x $ x O, n_(=,u)(s,b ) =n_n_, fi(x,y)(s,b) = 

and r _< ys(b) <_ r } 

is also semi-algebraic. Since 

e = 

the result follows. I 

N U B..(s,b), 
(s,b)ESx B ~_,n<lSl x IBI 

7. Consequences 

We derive in this section implications of the semi-algebraic property of the set 

{(6,x,y) ~ > 0, (x,y) E $ • O(c) is a fixed point of Be}. By Mertens-Sorin- 

Zamir [6], ch. VII, there is a map f :  (0, ~) ~ $ x O, such that f(~) = (x e, ye) 

is a fixed point of Be, and moreover, for each (s, a, b) E S • A x B, the maps 

~ x~(a) and E ~ y~(b) have an expansion in Puiseux series in a neighborhood 

of zero. Therefore, for each (s, a) E S x A, there exist nonnegative numbers 

7r(s, a) and d(s, a) such that 

xes(a) ,~ 7r(s, a)r d(s'a) 

in a neighborhood of zero. 
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7.1 ASYMPTOTIC BEHAVIOR OF (X e, ye). In this section, we briefly recall some 

results from [11]. We denote by 0 the family (x ~, Y~)~>0, and we set (x e, ye) = 

limE-~o (x e , yr 

7.1.1 Communieating sets. Given C C_ S\S*, we let ec  = inf{n >_ 1, s,, ~ C} 

denote the exit time from C. Given s' C S, we let rs, = inf{n > 1, sn = 

s'} denote the first return in s'. A set C C_ S\S* c o m m u n i c a t e s  for  0 if 

lim~-,o Ps,~,y~ (rs, < ec)  = 0 for each s, s ~ E C. The collection of such sets is 

denoted C(0) and we denote by C(0) the union of C(0) and of the singleton sets 

{s},s C S\S*. By Lemma 24 in [11], C(O) C C(x ~176 Given Ct,C2 e C(0), 
either C1 M C2 = 0 or C1 and C2 can be compared by means of inclusion. Hence 

C(0), ordered by inclusion, is a collection of disjoint trees. 

7.1.2 Graphs and exit distributions. Given C c_ S\S*, we define a C-graph to 

be an oriented graph on C such that: 

�9 for each s C C, there is exactly one edge incident out of s; 

�9 for each s ~ C, there is no edge incident out of s; 

�9 g has no loop. 

Therefore, for each s E C, there is a unique s' ~ C such that there is a path from 

s to s'. Moreover, this path is unique. For s E C, s ~ ~ C, we let Gc(s -~s ~) be the 

set of C-graphs such that there is a path from s to s ~. Given an edge (s, s') of g, we 

denote by (as(g), b~(g)) the unique pair (a, b) C A • B such that p(s'is, a, b) > O, 
if such a pair exists. In that case, we set d(s,s') = d(s, as(g)) + d(s, bs(g)); 
otherwise, we set d(s, s') = +co. 

For g C Go,  and an edge (s, s') of g, we denote by (as(g),bs(g)) the unique 

pair (a, b) E A • B such that p(s'ls , a, b) :> 0 if such a pair exists. 

For e > 0, we define the weight we(g) of g under (x ~, ye) as 

H p(s'ls, 
(s,s')eg 

and its valuation by 

(2) d ( g ) =  E d(s,s'). 
(s,s')eg 

Observe that  we(g) > 0 if d(g) < + ~ ;  moreover, we(g) is then of the order e d(g). 

We set dc = mingeacd(g), G~ in = {g C Gc, d(g) = de} and G~in(s --+s') = 

Gc(s --~s') M G~ in. We denote by Qs,e(.]C) the law of sec, given (x c, y~) and 

starting from s. By Freidlin-Wentzell [4], Chapter 6, Lemma 3.3, 

(3) q ,ds'lC) = Eg Gc(s  ,) 
Egccc w (g) ' 
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hence (see [11]) 

Qs,0(s']C) = lira Qs,~(s']C) exists and Qs,0(s'iC ) > 0 ~=~ G~in(s --~s') :/: 0. 
~--~0 

If C �9 C(8), the distribution Qs,0(.IC) is independent of s �9 C. We simply write 
Grnin Q0('[C). Moreover, i fg  �9 c , all paths o fg  end up in the same state outside 

C :  rain t G C (su-+s) = Gmin"8C ~2--+s '~), for every sl,s2 �9 C. We simply write G ~ m ( s ' ) .  

Finally, Q0(.]D) is in the convex hull of the set {p(.[e), e �9 E c ( x  ~ y0)}. 

The link between C(8) and the exit distributions is provided by the following 

result. Let C be a collection of disjoint subsets of C(8), and ~ be the transition 

sub-kcrnel defined on C by ~(C'[C) = Qe(C'[C). Then 

U C 6 C(8) ~ U c is a recurrent set for ~. 
C6ff C6ff 

This proves the next result. Let C* (8) be the collection of maximal elements of 

C(0). 

LEMMA 14: Let ~ be the transition [unction on C*(0) u S* defined by 

 (w'lw) -- Qo(w'lw) i f w  �9 C*(8),  
[ 1~=~, if  w �9 S*. 

The recurrent sets for ~ are the elements of S*. 

7.2 CONCLUSION. The function s ~ 0'(s, x ~, y~) is harmonic w.r.t, the transi- 

tion function induced by (x ~, y~). Hence 

-y(s,x~,y e) -- EQ~ whenever s �9 C C_ S\S*.  

LEMMA 17: 7(') = lim~-~o 7(', x ~, Y~) exists. In addition, 

�9 "r(s) = .q(s) [or s �9 S*; 

�9 7(s) = E[7(')ls, x~,Y~] for each s �9 S; 

�9 7(s) = Eq0(.ic)[7(.)] whenever s �9 C �9 C(0). 

We prove in this section the next proposition, which implies Theorem 2. 

PROPOSITION 16: For each s �9 S, 7(s) is an equilibrium payoff for the game 

starting in s. 

We need only prove that the conditions of Proposition 4 are satisfied for 7, 

C = C*(O), (x s, ye), and the exit distributions qc = Q~(.[C), C �9 C*(0). 
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Condit ion P 5  is a consequence of Lemma 14. Condition P 3  is a consequence 

of Lemma 15. We now check Condition P2 .  

By Lemma 15, co(s, b) = lim~_~0 c(~,y~)(s, b) exists and is equal to 

(4) co (s ,  b) = m a x  E b 2 (.)l 8, - E (.)l s,  hi. 
B 

LEMMA 17: Fors e S \S* ,  e o (xs, y~) is a Nash equilibrium of the game with payoff 

function E[7[s, . ,  .]. 

Proof: We first prove that  x~ is a best  reply to y~. By construction, x ~ E B l ( y  ~) 

hence 
E[.),I (x ~ ' ye)[8, xs ~, ys ~] = m a x  E["? 1 (x e , y~)Is, a, y~]. 

aCA 

By letting e--+0, one obtains 

E[711s, xs 0, y~] = m a x E [ @ l s  , a, ys~ 
aEA 

0 For each (s, b) C S \S*  x B, one has We now prove that  yO is a best  reply to x~. 

0 b] maxE[-y21s, x~ | y~ > 0 =* co(s,b) = 0 ~ E['y21s, xs, = 
B 

We deduce, for later use, a corollary that  allows one to compare unilateral exits 

of player 2 from a communicat ing set. 

LEMMA 18: Let C c C(O) be given. Let (Sl ,  bl), (s2, b2) E C x B. One has 

E[~'21sl, x~ bl] > E[~/2182, x~ b2] r c0(81, bl) < co(s2, b2). 

Proof: By Lemma 17, 

o 0 maxE[7218i, xs~ b] = E[7218i, Xs, , y.,] = ~/2(s~), for i = 1, 2. 
bOB 

By Lemma 15, "//2(.5"1) = "~2($2). The result follows from (4). 

We now check Condit ion P4 .  

LEMMA 19: One has ~/(s) >__ v(s) for each s. 

Proof: Since x ~ C Bl(y~),  one has 71(s, xe,y  E) k vl(s)  �9 By letting a--+0, one 

gets @(s)  >_ vl(s). 
Let ~ be a best-reply of player 2 to x e, i.e..y2 (s, x e, y) _< 72 (s, x ~ y~ for each y. 

In particular,  ~'2(s, x e, y~ _> v2(s). The existence of such a strategy follows from 
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[1]. We now prove that 3,2(s, x e, y~ < -y2(s). Since v2(s) > 0 for each s, the pair 

(x ~ y~ is absorbing. On the other hand, 

Eh21s, xgiy ] < E[ :ls, = for each 

By Lemma 9 (stated for player 2 rather than for player 1), this implies ~/2(s, x e, y-) 

< 72(s) for each s, using Lemma 15. I 

7.2.1 Condition P1. It remains to check Condition P1.  By Proposition 7, it 

is enough to check that the exit distribution Qe(.I C) is controlled given ~/and 
(x e, ye) for every C �9 C*(0) M C(0) (i.e., for every maximal communicating set). 

Before proceeding with the proof, we recall two lemmas from [11]. Let So �9 
S\S*,  5 > 0 be given, and let D be the minimal element of C(0) such that 

So �9 D and dD> dD\{so} + (~]D] 

(we here assume that such a set exists). 

LEMMA 20: For s �9 D, s' ~ D, one has d(s, s') > 5. 

LEMMA 21: Let F E C(6) such that D C_ F. Let g,~ E G~ in. Let (sl, s~) be the 

unique edge of g such that s~ • F. Let (s2, s~) be an edge of~ such that s2 �9 D 

and s' 2 ~ D. Assume that sl �9 D; and that d(sl,as,(g)) = O. Then 

d(s2, bs2(~)) <_ 5 ~ d(s2,a82(~)) > d(s2,a82(g)). 

We let C E C*(0)M C(0) be fixed until the end of the paper. For convenience, 

we shall assume that for (s, a, b) E C x A • B, 

(5) p(Cis, a, b) < 1 ~ p(CI s, a, b) = O. 

See [12], Section 6.3.2 for the proof that this entails no loss of generality. It 

is also convenient to assume that, for each s ~ ~ C, there is at most one triple 

(s, a, b) E C • A • B such that p(s'is , a, b) > O. 
We write q instead of Qe(']C). We adopt the notations of Section 5.2.1. We 

write 

q =  E a~p(.ie), a~>_0, E a r  
eEEc(xe,ye)  e 

and set E i = {e c E~(xe,ye),  such that a~ > 0}, for i = 1 ,2 , j .  We check the 

requirements of Definition 4. Conditions 1 and 2 are fulfilled. Condition 4 follows 

from Lemma 17, since ~/_> v. 
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We check now that Condition 3 is satisfied�9 Let (s, a) �9 C • A be an element 

�9 ~ for ~ > 0 small enough, hence of E 1 Thus, a �9 Supp x s 

E[71 (x ~ , y~)ls, a, y~] = "yl(s, x ~, y~). 

The first part of Condition 3 follows by letting ~--+0. The second part is a 

consequenCe of Lemma 17. 

We proceed with the definition of the partition S of E2\F  ~ and of the sets 

(CF)FEs Recall that F ~ = {e e E 2, E['y2le] = "t2(C)}. For (So, bo) �9 E 2 \ F  0, 

let 

~o,bo = max d(s, b) 
(s,b) ECxB,ce(s,b)<co(so,bo) 

be the maximal valuation of an action better than bo. 

We first compare d(so, bo) and 58o,5o. 

LEMMA 22: One has d(so, bo) > ISl~so,bo �9 

Proo~ Let (s,b) E C • B be such that co(s,b) < c0(so, bo). This implies 

cx,,y,(s,b) < cx%y,(so, bo) for E small enough. Therefore, n(~,,~,)(s,b) <_ 
~(xr (so, bo). Using the fixed-point property of (x e, yC), this yields 

b Yso(o) <_ c '~"(*''~)(s~176 _< E x r  ,~)(~,b) _< r • (y~(b))lSl, 
for each c > 0 small enough. 

Hence d(so, bo) > ]Sld(s, b). The result follows. I 

LEMMA 23: One has 

dc > dc\{so} + ~so,bo IC[ �9 

Proof: Since (so, bo) E E 2, there exists a graph g E G~ in such that  

p(g(so)lSo, x~o, bo) > 0; in other words, d(so,g(so)) = d(so, bo). Therefore, 

dc = d(g) >_ dck{so} + d(so, bo) > dc\{so} + ~ISI, 

using the previous lemma. I 

Let Dso,bo denote the minimal element D of C(0) that contains so and such 

that  

dD > dD\{so} + 5so,bo IDI �9 

This defines a map lr : E2 \F~  Observe that one may have ~r(So, bo) C 

r(s l ,  bl) for some (so, bo), (sl, 51) e E2 \F  ~ 
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We define E as the partition of E2\F  ~ induced by zr. It is characterized by: 

for each F E s (so, b0) E F, one has F = {(s,b) E E2\F  ~ Ds,b = Dso,bo}- 

For F E S, we set CF = Ds,b, where (s, b) is any element of F.  

In the sequel, we fix F E E, and we check conditions 5(a) through 5(e). 

Conditions 5(a) and 5(b) are satisfied by construction. 

LEMMA 24: Let (so, bo) E F.  For each unilateral exit (s, b) E CF x B of player 
2 from CF, one has 

E[72[s, xs e, b] _< El72 x ~ I sO, so,bo]" 

Proof: Let s' q~ CF be such that p[s'is, x~ > 0. Hence d(s,s') <_ d(s,b). 
By Lemma 20, one has d(s, s ~) > ~so,bo. This yields d(s, b) > ~so,bo, hence 

ce(s,b) <_ co(so, bo). The result follows by Lemma 18. I 

LEMMA 25: Let x E A(A) s, and K C_ S\S*. There exists a unilateral exit 
(s, b) E K x B from K such that 

(6) E[v2[s, xs, b] >_ maxv 2. 
K 

Proof." Assume that there is no unilateral exit such that (6) holds. Let a ,  be 

the strategy that plays x up to ~c = 1 + inf{n _> 1, p(K[s,~,xs~,bn) < 1}, 
and switches to a ~]-minmax strategy at stage ~'c. Choose so E K such that 

v2(so) = maxK v 2. For every strategy T of player 2, one has 

72(So, cr,, T) <_ Eso,a,,r[(v2(s-gc) + ~1)1~c<+oo ] < v2(so), 

where the second inequality holds provided ~/is small enough--a contradiction. 

I 

COROLLARY 26: Conditions 5(c) and 5(e) are satisfied. 

Proof: By Lemma 25, there is a unilateral exit (s, b) from CF such that 

E[v2is, xs, b] > maxc~v 2. Let (so, bo) E f .  By Lemma 24, E[72]s, Xes,b ] 
< 2 0 3,2 _ E[7 Iso,Xso,bo ]. Since >_ v 2, the two inequalities yield E[72]so,Xeso,bo ] 
>_ H(x,  CF). Condition 5(c) follows. Condition 5(e) is immediate. I 

We conclude with condition 5(d). Recall that qF = ~ ~--]~eEF aeP('le) �9 
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PROPOSITION 27: EaR [71] = 71(C). 

113 

Proo~ By construction, Ca = CF => F = G. We proceed inductively over the 

size of CF. We let $'  = {G E 8, Cc C_ CF}. The proofs for the initial step and 

for the induction step are analog. We assume below that either $ '  = {F}, or 

that  Ear[71] -- 71(C), for each G E 8', such that Ca c CF. 

By Lemma 24, 6Sl,b~ > 5sob,o, as soon as (So, bo) E F and (Sl, bl) E G for some 

G E E ' .  

We shall construct a family (5 ~) of stationary strategies of player 1, with the 

same support as x e, and such that 

(7) lim (~s,e(.I C) - ~-~VEC' aV qG 
e---+O EG6$' OLG ' 

where (~s,e denotes the law of See under (xe, ye), given the initial state s. Since 
x e �9 Bl(ye), one has ~e �9 Bl(ye), hence 

ye)] = x e, ye), 

hence E~,.,(.lC)[71(x e, y~)] = 71(s; x e, ye). Therefore, EqF [7 I] = 71(C), using 

(7) and the induction hypothesis. 

We obtain (7) by increasing d(s, a), for well-chosen (sl a) �9 CF • A. Set L = 

[-JGE~' Supp qG. Thus, for each s' �9 L, there is exactly one exit e �9 E 1 U E 2 [3 E j , 

such that  p(s'le ) > 0 and moreover e �9 G, for some G �9 C'. The actions as(g), for 
Gmin ( 8/~ 8' g �9 c ~ J, �9 L, are the actions that, in state s, contribute to the fact that 

the states in L are reached with positive probability. Leaving the valuations of 

these actions unchanged will ensure that the relative probabilities of reaching two 

states in L does not change. Increasing the valuations of the remaining actions 

will ensure that  the weight of any state s' ~ L vanishes in the exit distribution. 

Formally, we set 

(8) 

we choose 

and we set 

d s =  ' maxm,n , d(s, as(g)), 
s 6L,gEG C" (s)  

{ ~(s,a) > d(s,a) i fd (s ,a )  > ds 
d(s,a) = d(s,a) otherwise 

1 r(s,a)  for each(s,a) E C x A ,  
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where Ns(E) = ~aeATr(s,a)e ~(s'a) is a normalization factor. Observe that 
N 8  xs(a)/x~(a ) is equivalent to e ~(s'a)-d(~'a) in the neighborhood of zero. We shall 

prove that (7) holds for this specific choice of (2~). 

For g �9 Gc, and (s, s') an edge of g, we define d(s, s') and d(g) by (2), with 

d(s, a) rather than d(s,a). We also set d c =  mingcGcd(g), and with some abuse 

of notation, v~in  __ {g �9 Gc,d(g ) __ dc}. We also denote by t~(.q) the weight 

of a graph g given (5~, ye). 

By definition of d(s, a), one has d(g) > d(g) for every g �9 Gc, and d(g) = d(g) 
whenever g �9 G~in(s ') for some s' �9 L. In particular, de = de. 

We now argue that 

(9) d(g) > d(g) whenever g �9 G~in(j)  for some s' r L. 

Let g be such a graph. There is a unique edge (s, ~) of g such that ~ r C, and 

= s ~. By definition of L, one necessarily has s ~ CF, since s ~ ~ L. 

Let (s2, s~) be an edge of g with s2 �9 CF, s~ ~ CF. By the previous paragraph, 

one has s~ �9 C. Therefore, E[~gls2, xg~, b~ (g)] = -~2(C), hence co(s2, b82 (g)) = O. 
Thus d(s2, b~ 2 (g) <_ 5so,bo, where (So, b0) �9 F. 

G min f ~  By Lemma 21, one has d(s2, a~:(g)) > d(s2,a,2((]) ), for each ~ �9 c t /, g �9 

L. Hence d(s2,as2(g)) > ds2(see (8)). Therefore, d(s2,as2(g)) > d(s2,as2(g)), 
which implies (9). 

We have thus proven that 

~ i n _  U G~in(j)" 
stEL 

Moreover, one clearly has 

lim 5~(g) - 1 
~-~o wJg)  

for every g �9 ~ i n .  

The result follows, using Freidlin-Wentzell's formula (3). I 

8. P r o o f  of  P r o p o s i t i o n  7 

There are two cases to distinguish, according to whether or not public lotteries 

by player 1 are feasible. As in the previous section, we assume that p(CIs, a, b) < 
1 ~ p(Cis, a, b) = 0, for each (s, a, b) �9 C • A x B. 

8.1 A FIRST CASE: PUBLIC LOTTERIES ARE NOT FEASIBLE. We assume here 
that  for some F* �9 g, there is no pair (s, a) E CF. x A, such that 

(10) xs(a) = 0 and p(Cls, a, ys) -- 1. 
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We assume w.l.o.g, that F* is a minimal element of g with this property. 

derive a number of implications of this assumption. 

CLAIM 28: CF* = C 

We 

Proof: Assume to the contrary that CF. C C. Since C �9 C(x,y), the graph 

Go(x,  y) is strongly connected. Hence there is an arrow (s, s') of Gc(x,  y) with 

8 �9 CF. , 8 t �9 C\CF. ,  i.e., there exists a pair (~ ,  ~ )  �9 A(A) x A(B), such that 

supp xs C supp ~ ,  supp Ys C_ supp ~ ,  

p(Cls,'xs, Ys) = 1 and p(s']s, xs,ys) > O. 

In particular, p(CIs, xs, ys) = 1. By assumption 5(e), E[3`21S, Xs, b] < 3`2(C) 

for each unilateral exit (s, b) from CF*. Therefore, P(CF* Is, x~, Ys) = 1. Since 

p(CF.]S, xs,ys) < 1, suppxs is a strict subset of supp Xs. For any 

a �9 supp ~ \  supp x~, the pair (s, a) satisfies (10), a contradiction. | 

CLAIM 29: E j = ~. 

Proof: If (s, a, b) �9 E j,  the pair (s, a) satisfies (10). Since CF* = C, we have a 

contradiction. | 

CLAIM 30: E[3`218, Xs, b] is independent of (s, b) �9 E 2. 

Proof: Let e �9 E 2. We shall prove that E[3`2]e] = EqF. [72]. By property 5(e) 

for F*, E[3`2[e] _< EqF. [3`2]. Assume that E[9'21e] < EqF. [72], and let F be the 

element of E that contains e. Since CF C CF*, there is no pair (s, a) �9 CF x A 
such that  (10) holds. By applying Claim 28 to F, one gets CF = C. But now 

the inequality E[3`21e] < EqF. [72] implies Eqr [3̀  2] < E[3`21e *] for e* �9 F*, which 

contradicts 5(e) for F.  | 

Thus q = ~ E  1 c~eqe + Y~E~ aeqe, where 
�9 EqE.  [3` 1] = Eq[3` 1] = E[3`l]e] for each e e El ;  

�9 E[3`2M = EqE 2 [3 ,2] < EqE 1 [3 ,2] for each e �9 E 2. 

We now describe briefly a profile (a*, T*) that implements q up to 5. A formal 

proof can easily be obtained by adapting the proof of the next section. 

The play prior to ec is divided in two phases. In the first phase, the exits in E 1 

are tried cyclically. Order the elements of E 1 in a periodic sequence (s m, am)meN. 

For each m, s m is visited N times. Each time, a m is played with small probability. 

The number N is chosen large enough to allow for reliable statistical checking 
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of the empirical distribution of player 2's actions. The length of the phase is 

such that the overall probability that exit occurs in the first phase is aE ' .  In the 

second phase, the exits in E 2 are tried cyclically, and the empirical distribution 

of player l 's  choices is checked. 

In addition, punishment takes place (forever) as soon as a player plays an 

action that has zero probability under (a*, v*) (given the past history), or if exit 

does not occur within a large, bounded number of stages. 

Since U(x,  C) <_ EqE 2 [,.)12] and U(y,  C) < nq[~l], deviations that are imme- 

diately observed are non-profitable. As for non-observable deviations, player 1 

cannot profit by manipulating the relative weights of the elements of E 1 in the exit 

distribution, or the total weight of the elements of E 2 since Eqe 2 [71] = E[7~le] 

for each e E El ;  player 2 cannot profit by manipulating the relative weights of 

the elements of E 2 since E['),21e] = EqE 2 [.),2] for each e E E 2. 

8.2 A SECOND CASE: PUBLIC LOTTERIES ARE FEASIBLE. We here assume 

that for each F E C, there is a pair (8 F, a F) E CF X A such that xs~ (a) = 0 

a n d  p(CI8 F, a F, ysF) = 1. For ease of discussion, we implicitly assume that each 

of the sets E l, E 2 and EJ is non-empty. The adjustments needed to handle the 

case where one or two of these sets is empty are obvious. 

We formalize the ideas of Example 2. We describe a profile (a*, r*) that 

implements q up to 5. The definition involves several parameters, that are fixed 

immediately afterwards. Under (a*,v*), the play is divided into a succession 

of identical cycles. The probability of exit in any cycle is chosen small, so that 

the continuation payoff (defined as the expected exit payoff, given that exit has 

not yet occurred) remains always close t o  Eq['y].  Each cycle is divided into a 

succession of phases. In each phase, one type of exit is tried. First, player 1 

performs a public lottery to decide whether the exits in F E • should be used. 

Then, successively, the exits in E l, E 2 and EJ are tried (the particular ordering 

of the phases is irrelevant). 

We rank the elements of t~ from F 1 to F M~ and, for each m <_ Mo, wc set 

(8m, a m) = (sF",aFm): it is the pair that will be used in the public lottery 

associated with F TM. 

Observe that the construction of section 8.1 works in particular if E 1 = q}. We 

may thus apply it to the set CF,, E C(x, y) and the distribution qF m . Hence there 

is a profile (am, 7"m) that implements qF m up to (f. We call 7r "~ the associated 

stopping time. 

We label the elements of E 1 as (s m, am), where m ranges from Mo + 1 to M1, 

the elements of F ~ as (s 'n, bin), where m ranges from M1 + 1 to M2, and the 
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elements of E j from (s m, a m, b m) where m ranges from M1 + 1 to M. By Lemma 

9 in [12], given ~ > 0, there exist for each m _< M a perturbation (xm,y  m) of 

(x, y) such that  

�9 II(xm, y m) - (x ,y) l l  < 

�9 C is closed under (x m, ym) and s m is reached a.s. in finite time, whatever 

the initial state in C. 

In addition, for m < M0, we require that CF.~ be closed under (x m, ym). The 

profile (x m, ym) will be used to reach sm. For r > M, we set s r = s m if r = m 

modulo M, so that  the sequence (s r) has period M. All finite sequences are 

extended in a similar periodic way, whenever meaningful. For instance, we set 

a r = a m if r = m modulo M where m <_ M1. We write m[M] for the value of m 

modulo M. 

Under (a*, T*) the players visit successively N times each state s m, m > 1. In 

each passage, they mostly play according to (xs-~, Ys-~) but perturb with some 

small probability. The kind of perturbations depends on m[M]. 

For p = 1 , . . . ,  N, the p-th passage up  in s m is defined recursively by 

u ~ = i n f { n _ > l , s n = s l } a n d u p + 1 1  = in f{n>uv ,1  s n = s l } ,  f o r l < _ p < g ,  

m--1 inf{n > m s m} u ~ = i n f { n > u  N , s n = s  m}andu'~p+l= U p , S n =  

for 1 _<p < N, ra > 1. 

For m ~ M0 denote by 

l m = inf{n >_ 1, n = u~v, with r = m[U] and a ~  r a ~, for k = 1 , . . . , N }  

the first success of the public lottery associated with F m, set [ m =  1,~ + 1 and 

/ p u b  : infm<Mo ira. 

We define the strategy a* up to rain(/pub, ec) by: play at stage n 

am with proba ~m, x8 m otherwise if n = up  with m[M] <_ M1, p <_ N 
xs~- i f n  u p w i t h M l < m [ M ] < _ M 2 ,  p < _ N  
a m with proba x/~ -m, xsm otherwise if n Up with/I//2 < m[M] <_ M, p <_ N 
x ~  n otherwise 

m--1  where the index mn in the last case is the unique integer such that either u N < 

n < u ~  or Upm <n<Up+lm for some l _< p < N; it is the index of the state that 

the players are currently trying to reach. The first case deals both with stages 

in which public lotteries are performed and with stages in which unilateral exits 

by player 1 are tried. In the second case, unilateral exits of player 2 are tried. In 

the third case, joint exits are tried. 
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Since mn and the passage times are stopping times, this definition is 
meaningful. The definition of T* up to min(/pub, ec) is similar to that of a*. 

If/pub = [m < ec, (a*, T*) switches to (am, Tin) at that stage. 

We now choose the parameters that appear in the definition of (a*,T*) or 

in the computation. First, we choose /~ > 0 small enough x/~ _< 5/12M and 

(1 +/~)4 _ 1 + ~(1 + ~) < 6/~. Given #1 > 0, we define #m, m = 2 , . . . ,  M by 

~m+l  _ _  OLm+l, 

# m ( 1  _ # m )  a m  ' 

#m is the probability that exit occurs in one of the N visits to s m (given exit has 

not occurred before). We assume that #1 is small enough so that 

1 #ml C~m2 
(11) 1 +-----~ < x < 1 +/3, for each ml,  m2. 

M We let # be defined by 1 - # = 1-Ira=l(1 - #m). It is the probability that  exit 
occurs in a given cycle. 

The statistical tests used for monitoring purposes are performed independently 
across the different cycles. They are not perfectly reliable, meaning that the 

probability that player 1 (resp. player 2) will fail a test in a given cycle is strictly 

positive, even if he uses a* (resp. T*), no matter how the parameters are chosen. 

It should however be small enough so that the probability that a player will ever 

fail a test before ec is small. 

We choose N1 such that (1 - #)N1 _< /~: it provides a crude upper bound on 

the expected number of cycles that will be completed before ec. We then fix a 

parameter 0 < A < min(~/4N1,5/NIM): it is related to the power of the tests. 

We now choose the number N of visits and the probabilities ~m, m _< M. We 

briefly describe the tests that are used. In the passages in s m, Mo + 1 <_ m[M] < 
M1, the empirical distribution of the actions selected by player 2 is checked by 

player 1; in the passages in s m, M1 < re[M] <_ M2, the empirical distribution of 

the actions of player 1 is checked; in the passages in s m, M2 < m[M] <_ M, the 

empirical frequencies of a m and b m are checked. These checks cannot be active in 

the very first passages, otherwise the probability of failing a test would be high. 

For M0 < rn < MI (resp. M1 < m _< M2) we let (ym)• (resp. (xnm)n) be a 

sequence of lid variables with law Ys-, (with law xs-, respectively). We denote 

by (2m)n and (~m)n the associated empirical processes. We choose Nc E N such 

that 
P r (  sup [[~m-y~m[l_>A) <A foreachMo<m<_M1, 

n>_Nc 

( sup []2~-xs,~[l_>A) <A for eachM1 < m _ < M 2 .  Pr 
\ n > _ N c  ] 
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Tests of empirical distributions are performed only after Nc passages. 

Given N e N, there exist (Tlm)m=l ..... M such that (1-7/'~) N = #m for m _< M0, 

and (1 - ~lm) g = 1 - #m for m > M0. Clearly, ~/'~--+0 as N--+oo, for each m, 

and N ~ m ~ #  m for m > M0. We choose N large enough so that  the following 

inequalities are satisfied: 

I1 for each m > M0, #m/(1 + ~) _< N~7 m ~_ #m(1 +/~); 

I2 for each m <: M2, NJI  ~" < A, and NT1 m < 1; 

I3 for each M2 < m < M, and (Bn),  a sequence of iid Bernoulli variables 

with parameter v/-~,  one has 

1 g A 
Pr~' l  ~ - ~  < _ _ ~ B n <  ~ v ~ ( l + ~ ) } > l l  - - ' 4  

We define 

lr 8 = inf{n > 1, o'*(h,~_l)(a,~_l) = 0 or ~-*(hn-1)(bn-1) = 0}, 
m r~ = inf{ n = Up + 1, s.t. Mo < m[M] < M1, p > Nc and I[Yp- Y8 ~1[ > A}, 

r~ = inf{ n = Up + 1, s.t. M1 < m[M] <_ M2, p >_ Nc and [15:p - xs~ [I > A}, 

r~ = inf{n = Up + 1, s.t. M2 < m[M] <_ M, 

and [{k _< p, au,~ = am}[ > g x / - ~ ( 1  +/~)}, 

#~ = inf{n = U~v + 1, s.t. M2 < m[M] <_ M, 

and [{k _< N, a~,~, -- am}l <_ Y ~x/~(1 +/~)}, 

and define r~ and lr j by replacing a's by b's in the definition of 7r~ and #~. The 

exponent s is a mnemonic for support, zr s is the basic test of consistency with 

a*, T*. The exponents u and j refer to the kind of exits that are currently being 

tried, r~ tests whether player 2 deviates from y, in the states corresponding to 

unilateral exits of player 1; 7r~' plays a symmetric role. r~ tests whether player 1 

is overplaying the actions that  are part of joint exits; 7r~ tests whether player 1 

is underplaying them. 
We introduce a stopping time that stops according to lr m, in the event /pub = 

[m< ec: we define 

[m+ 7rm o O r"̀  on the event /pub =[m < e C  ' 
7r(m) / +0o otherwise, 

where 0 l-~ (hoo) is the play starting at [m and r pub = minm<MTr(m). 

We set 7rl = min(r  ~, 7r~', 7r{, ~{, r p~D, N~), r2 = min(r  ~, r~, lr~, #~, r p"b, Y ~) 

and 7r = min(r l ,  r2). 
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The remainder 

proposition. 

PROPOSITION 31: 

of this section is devoted to the 

(a*, T*) implements q up to 35. 

proof of the following 

LEMMA 32: One has Ps,~.,~.(Tr _< ec) <_ 6 + AMN1 <_ 26. 

Proof: Clearly, P~,~.,~-. (Tr ~ < eo) = 0. By definition, 

Ps,~.,~.(u~ < 7r~ < min(ec, u~v + 1)) _< A, whenever M1 < re[M] < M2. 

N1M Therefore, Ps,.*,~* (Tr~ < u g + 1) _< A(M2 - M1)N~. Similarly, 

P,,~-,~-(~I' <- u~ ̀ M + 1) <_ ~(M~ - Mo)g~ 

and 

Ps,=* ~.(r~ < u~ 'M + 1) + Ps,a*,r*(#~ < iV, M 2 A_ , - - -"N +1)<_  ( M - / 1 4 2 )  

for i = 1,2. Hence Ps,a.,r.(Tr < .N1M -- uN + 1) <_ AMN1. Since 
Ps,a*,~.(ec > u N1M) ~_ 5, the result follows. | 

We now prove that the properties 3 and 4 in Definition 3 are satisfied. We 

will prove only property 3. Even though the roles of the two players are not 

symmetric, the proof of property 4 can be easily deduced from what follows. Let 

cr be a pure strategy. For simplicity, we write P and E rather than Ps,~,r- and 

E 8 iO}T* �9 

Our ultimate goal is to estimate E[%iont], where the continuation payoff 7ciont 

is defined by 7ciont = vl(s~)l~r<_ec + 7](sec)lec<~r. We set f = min(ec,/pub). 
Define 

f "rl(s~c) 
Eqmhl] 

t Eq[71] 

if f = ec < 7rl, 
if f = ['~ < ,rl, for some m < Mo, 
if 7ri < f .  

LEMMA 33: One has 
E[')'lont] _~ E[~r 1] q- 3(~. 

Proof: We deal with the event {~r] _< 7r2}. Observe first that %ion t = ~1 on the 

event f = ec < 7q. Let hn E {n = f = [m < 7rl} for some m <_ M0. Given hn, 

the state sn belongs to CF~ and z* switches to Tm. Hence, denoting by a u~ the 

strategy induced by ar in the subgame starting after hn, one has 

E[7~ont[hn] _ E..,~h.,r'[Vl(S.")X.m<~c + 7i(s~c)lec<~m] __< Eq~[7 i] + 6. 
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This implies 
1 

E [ ' ) ' c o n t l f = / p . b < ~ h ]  _~ E[711f=i ,  ob<~l] + ~. 

Since a is pure,  the event {n = lrl - 1 < /pub _ 1} can be identified with an 

element  of Ha .  Indeed, the definition of this event involves only the history up 

to s tage n and the act ion played by player 1 in stage n. 

Let  h~ C {n = 7rl - 1 < /pub  _ 1}. One has 

E[vl(sTrl)[hn] = E[vl[sn,a, T*(hn)] ~_ ~/l(Sn) + ~, 

since [[T*(h,~) --Ys,[[ _< ~ and H(y ,C)  <_ "yl(C). 
Since P ( r  2 _< ec) < 2~, the result follows. | 

We first prove in L e m m a  36 tha t  player 1 cannot  manipula te  prior to 7rl the 

relative weight of two exits which are either unilateral  exits of player 2 or joint 

exits. We prove in L e m m a  37 tha t  player 1 cannot  manipula te  the dis tr ibut ion 

of the act ion he chooses on the stage in which player 2 plays a unilateral  exit. 

The  final es t imate  follows easily in L e m m a  38. 

R e m e m b e r  tha t  for m _< M0, I m is defined as the first success of the lotteries 

associated with Fm. For m > M0, we define 1 m as the first s tage in which the 

exit corresponding to s m is played: 

1 m -- inf{n >_ 1, (s~, a~) = (8 m, am)} if Mo < m < M1, 

l m - - i n f { n _ >  1 , ( s n , b ~ ) = ( s  m,bm)} i f M l < m < M 2 ,  

1 m = i n f { n _ >  1 , ( s ~ , a ~ , b n ) = ( s  m,a m,bm)} i f M s < m _ < M ,  

and l = infm Im. We set dl = 7rl - 1, which we interpret  as the first deviat ion by 

player 1. For m < M ,  we set Pm = P ( / =  I m < dl).  

Let M1 < k < M2, and /I//2 < m _< M.  We compute  an es t imate  of 

We first provide an es t imate  on the probabi l i ty  P ( u [  < 1 < U~v, l < dl)  tha t  

exit occurs in a given sequence of passages in sm. 

LEMMA 34: Let  r C N,  with r = m[M]. One has 

P(u~ <_l <_ U~g,l < d l )  ~_ g ~ m ( 1  + fl) x P(u~ _< 1,U~l < dl)) 

and 
N~ m r 

P(u[ _ l ___ u v, l < dx) > 1--i- P(uN ___ l, < dx)). 

Proof'. We prove the first claim. Set N m = N ~v/~-~(1 + fl). For q 6 N,  let iq be 

the q-th value of p such tha t  a~; = a m (iq = +oo  if no such value exists). Since 
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iq is a stopping time, the probability, given the past, that player 2 plays b m in 

stage u .r is ~v/-~ -~, whenever iq is finite and u .r < di. Thus 
S q  ~ q  - -  

P{ l=urz. < d i } =  x / ~ P ( u r q  -<l,ur < d l } ,  

hence, by summation over q, 

u r ur dl} < g 'nx / -~P(ur i  < l ,ui  < di}. P { / E {  il, } ' / <  r 
�9 �9 � 9  S N r n  - -  - -  

By definition, for every Po < N, 

#{P <_ Po, au~ = a m} < N m on the event Uvo < dl. 

Hence iNm+l > N on the event u~ < l < dl. Thus, 

P { / � 9  {Url, . . . ,u '~},l  < dl} _< P { / � 9  {url , . . . ,U~Nm},l  <d l } .  

The result follows. The proof of the second inequality is similar. | 

We now provide an estimate on the probability that exit occurs in a given 

sequence of passages in s k. Recall that exit k is a unilateral exit of player 2. 

LEMMA 35: Let r �9 N,  with r = k[M]. One has 

g~kP~UrN _< l,u~v < d l }  _< P { / � 9  {u~,...,U~v},l < di} 

<_ gykp{ur l  <_ l, Uri <d l } .  

Proof: The probability that, given the past history, player 2 plays b k in stage 
r r < di}. Hence u n is ~/k on the event {u r <_ l, u n 

N 

P { / � 9  {u~,...,UrN},l < d l }  = E P { / =  Up < di} 
p = l  

N 

=  ,kP(u; _< l ,u;  < dl}. , 
p=l 

L E M M A  36: One has [pm/a,~ - p k / a k [  <_ 6~. 

Proo~ Observe first that 

§ 

pm = Z p ( l  �9 < dl), 
i=O 

and that  a similar formula holds for Pk- Notice now that, for all i �9 N, 
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Using Lemmas 34 and 35, one gets 

Pk < Pm ~. -----Pk 
(1 +8)N7/k - g y m  - NT/k (1 + 8 )  + 1. 

Using (11), a straightforward computation yields 

P--T-~ < Pk(1 + 8) 4 and P__k_k ~ Pro(1 + 8)4 + 8(1 +/~), 
Olm O~k C~k O~rn 

from which the result follows. | 

The next lemma asserts that, if exit occurs through a given unilateral exit m 

of player 2, and given no deviation of player 1 has been detected, the distribution 

of player l 's action on stage ec - 1 is close to xsm. 

LEMMA 37: Let Mo < m <_ M1, and r �9 N, with r[M] = m. Set ~z = 

{u~ <_ l <_ UrN, l < d l } .  For every a �9 A, one has 

IP(al = a, 121) - xs~ (a)P(121)l < 4)~. 

Proo~ Let a E A b e g i v e n .  F o r p ~  N, wese t  X p =  1 if up < +oo, au~ = a ,  
= = r < +co, b~ = b r, Yv = 0 otherwise. and Xp 0 otherwise. We set Yp 1 if Up 

Finally, we set T = inf{p <_ N, dl _< u~}. The result follows immediately from 

Lemma 39, Section 8.2.1. | 

LEMMA 38: One has E[~ 1] _< Ea[71] + 4A + v~max(24,  2M). 

Proof: One needs only to prove that E[~lll<d~] <_ P{/ < dl}Eq[0 '1] + 4A + 
x/~max(24,2M), since ~1 = Eq[qA] on {l > dl}. One has 

M 

E[511l<dl] = ~ E[~ll'=lm<dl] 
m=l  
Mo 

= ~ pmEqm[7'] + ~ P-~E[71[ em] 
rn=l mE{ Mo+ I,...,M1}U( M2+ I,...,M } 

M2 
+ ~ ~ - ~ P { a z = a , l = l m < d l } E [ T Z l s m ,  a, bm]" 

re=M1+1 aEA 

Using Lemma 37, one gets 

Mo M 

E['~lll<d~] <_ ~ p m E q m [ 7 1 ] +  ~ PmE[~/llem]+ 4A' 
m----1 m=Mo+l  
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For m _< M0, one has Eqm['y 1] -= Eq[~A]; for Mo < m <_ M1,E[~/l[em] = Eq[~,l]. 

Thus, 
M1 M 

E[~111<dl] < (~--~. pm)Eq[V 1] + ~ pinE[vile m] + 4A. 
rn=l  rn=M1 +1 

By Lemma 36, one has IPm/Pk - a~/o~kl <_ 12~/pk, hence 

(12) p_~ am _< 24fl 
O~k maxr Pr 

for every M1 < m, k < M. 

Define the renormalizations 

O~rn Pm 
~ r n -  M a n d  P m -  M ' 

Ei=M1+I OQ Ei----M1 +1 Pi 
for m = M1 + 1 , . . . , M .  

By (12), one has [Pm/Pk -- am/ak[ <-- 24fl/max~p~, for every M1 < m , k  <_ M.  

This implies 

24~ 
(13) sup [~m - Pml -< - - .  

m m a x r  P r  

If max~pr _> x/~, (13) yields 

M 

pmEbll  ] < Eqb 11 + 24v . 
rn=Mo+l  

If maxr Pr <_ v/-~, then 

M M 

pmE[vl[e m] <_ ( ~ pi)Eq[q '1] + 2 M v ~ .  
m = M o + l  i=M1 +1 

8.2.1 An auxiliary lemma. We provide a precise statement of the standard idea 

that a player who chooses a stage according to a geometric distribution can 

monitor the distribution of the action selected in that stage by the other player. 

LEMMA 39: Let (f~, A, P ,  (An)n=1 ..... N) be a filtered space. Let (Xn, Yn), n = 

1 , . . . ,  N be {0, 1}-valued random variables and f(n = 1 E~: I  Xi. Let x, A e 

(0,1), Arc C N be given, and let T be a stopping time for (An)n. Let S = 

inf{n >__ 1, Yn = 1}. 

Assume that: 
�9 for each n = 1 , . . . , N ,  Xn and ]In are independent given .An and 

P(Y,~ = 1[,4,) = ~, i f T  > n; 

�9 for each n, the variables Xn-1 and Yn-1 are An-measurable; 
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�9 for each p > Nc, IXp - xl < A on the event {p < min(T, S)}. 

Then  

(14) I P ( X s  = 1, S < T)  - x P ( S  < T)I <_ Nc~ + (Nc~?) 2 + ~(1 + ~?N). 

One may think of Xn and Yn as the actions played by two players in the n- 

th visit to a given state. An is the information available at that  stage. The 

lemma provides an estimate on the law of the action X s  played by player 1 in 

the first occurrence of a given action by player 2. The stopping time T should 

be interpreted as the first stage in which player 2 sees a deviation by player 1. 

Proof" Denote by v = E [ ( X s -  x)IS<T] the left-hand side of (14). We introduce 

an auxiliary one-player game against nature, played in N stages. Nature plays 

a sequence (Yn)n=l ..... N. Choices of nature in different stages are independent 

Bernoulli variables with parameter 7/. Define s = inf{n _< N, Yn = 1}. The player 

chooses a sequence (Xn)n=l ..... g in {0, 1}, and a stopping time e with values in 

{ 1 , . . . , N }  U {+oo}. The player maximizes V = (xs - x)ls<e subject to the 

constraints ]2n - Xl <_ )~ for every n >_ Nc. 

Which information is available about former choices by nature is irrelevant. 

We assume the player receives no information whatsoever. 

Define a behavior strategy ~ as: in stage n, given the past choices 

( X l , . . .  , Xn_ l )  , choose w E {0, 1} and to exit with probability 

P (Xn  = w , T  = n iT  >_ n, (Xp)p<n = (Xp)p<n} 

(and define ~ after T in such a way that the constraint on (5:n) is satisfied). 

One can check that  Ea[V] = v. Therefore we need only prove that supa E[V] < 

gc~? + (Nc~?) 2 + ~(1 + ~?g). 

Let (r be a pure strategy in the auxiliary one-player game, i.e., a sequence 

(xn)n=l ..... g and e E { 1 , . . . , N }  U {+oo}. One has 

n 0  

E~[V] = E ~(1 - ~)n- l (xn - x), 
n----1 

where no = min(N, e - 1). 

Using the identity Xn - x = n(~n - x) - (n - 1)(~n-1 - x), one gets 

no--1 

Ea[V] = E n~2(1 - ~)n-1]5~n - x[ + n0~(1 - - xl. 
n = l  

Denote by A the sum on the right-hand side, and by B the remaining term. One 
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has B _< ANn if no >_ Nc, and B _< yNc otherwise. On the other hand, 

A <  
min(Nc,no-1) no-1 

E ny2(1 -- y)n-1 ..[_ ,~ Z ny2(1 -- y)n-1 

n=l n=min( Nc ,no-1)+ l 

___ ( y g c )  2 + A. 

The result follows. | 

References 

[1] D. Blackwell, Discrete dynamic programming, Annals of Mathematical Statistics 
33 (1962), 719-726. 

[2] H. Everett, Recursive games, in Contributions to the Theory of Games, Vol. II1 

(M. Dresher, A. W. Tucker and P. Wolfe, eds.), Princeton University Press, 
Princeton, N.J., 1957, pp. 47-78. 

[3] J. Flesch, F. Thuijsman and O. J. Vrieze, Recursive repeated games with absorbing 
states, Mathematics of Operations Research 21 (1996), 1016-1022. 

[4] M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, 

Springer, Berlin, 1984. 

[5] J. F. Mertens and A. Neyman, Stochastic games, International Journal of Game 
Theory 10 (1981), 53-56. 

[6] J. F. Mertens, S. Sorin and S. Zamir, Repeated games part b the central results, 
CORE Discussion Paper 9421, 1994. 

[7] D. Rosenberg and N. Vieille, The MaxMin of recursive games with incomplete 

information on one side, Mathematics of Operations Research 25 (2000), 23-35. 

[8] E. Solan, Three-player absorbing games, Mathematics of Operations Research 24 
(1999), 669-698. 

[9] E. Solan, Stochastic games with two non-absorbing states, Israel Journal of 
Mathematics, this volume, pp. 29-54. 

[10] N. Vieille, 2-person stochastic games II: The case of recursive games, Technical 
Report 9747, CEREMADE, 1997. 

[11] N. Vieille, Small perturbations and stochastic games, Israel Journal of 
Mathematics, this volume, pp. 127-142. 

[12] N. Vieille, Two-player stochastic games I: A reduction, Israel Journal of 
Mathematics, this volume, pp. 55-91. 


